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Abstract optimization, system identification, and probabilistic
Adjoint sensitivity calculation of stress, buckling and analysis. Finite difference derivatives are commonly
displacement constraints may be much less expensiwgsed, but they are expensive computationally and prone
than direct sensitivity calculation when the number ofto errors. Consequently, there is wide interest in
load cases is large. Adjoint stress and displacemeranalytical sensitivity methods, commonly classified as
sensitivities are available in the literature. Expressiongither direct or adjoint methods (e.g., Adelman and
for local buckling sensitivity of isotropic plate elements Haftka, 1989).
are derived in this study. Computational efficiency of
the adjoint method is sensitive to the number ofThe widely used direct method is obtained by direct
constraints and, therefore, the method benefits frondifferentiation of the equations of equilibrium, which
constraint lumping. A continuum version of the are used to compute the structural responses or static
Kreisselmeier-Steinhauser (KS) function is chosen tasolutions. The number of static solutions required in
lump constraints. The adjoint and direct methods arebtaining the derivatives is equal to the product of the
compared for three examples: a truss structure, a simpleumber of design variables and the number of load
HSCT wing model, and a large HSCT model. Thesecases. The adjoint method is obtained by differentiation
sensitivity derivatives are then used in optimization. of constraint functionals. The number of static solutions
required to obtain the derivatives is equal to the number
of constraints of interest. For problems with multiple

Introduction load cases or multiple structural configurations, such as
Sensitivity of structural response quantities, such aslamaged versions of a structure, the adjoint method can
functions of stress or displacement components, tbe more efficient than the direct method. This
design parameters is useful in structural applications ofcomputational advantage is enhanced for derivatives of
stress functions because these derivatives can be
calculated directly rather than obtained from derivatives
of the displacements. Reduction of the number of
constraints through constraint deletion and/or lumping
enhances the efficiency of the adjoint method.
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case, the adjoint load is implemented as initial straindoad cases (i.e., the number of vectors fiis Eq. (2)
imposed in the elements of interest. has to be solved,n; times.

Initial strains for the sensitivity of von Mises The adjoint method used here is based on a continuum
constraints with and without constraint lumping wereequation and requires the imposition of an adjoint load
derived in a previous work (Akgin et al., 1998).in the form of an initial strain distribution. When the
Implementation of the adjoint method was method is applied to a discrete model, an equation of
demonstrated for truss and plane-stress elements. the form

continuum version of the Kreisselmeier-Steinhauser

(KS) functional that allowed lumping of the constraints Ku®=f? A3)

with the adjoint method was investigated via a twenty-

five-.bar .truss problem.  The present study is &,55 1o be solved, times wheren, is the number of
continuation of that work. constraints of interest and, therefore, the number of

ad oint load vectorsﬁ u® is the adjoint displacement,
The objectives of this study are to derive the adjoint ) ] P

initial strains for local buckling sensitivity computation
and to demonstrate the efficiency of the adjoint metho®tress constraint$,” is derived from an applied initial
under multiple load cases with constraint lumping. It isStrain. A finite element code that has initial strain
shown that buckling constraints satisfy a homogeneitgapability can easily generate the adjoint fofée, The
property that simplifies buckling sensitivity use of the adjoint displacement® to calculate
computation by obviating the need to compute partiakensitivities is described subsequently
derivatives of the buckling constraint. The example
problems used are the structural optimization of a trus8uckling sensitivity formulation will be carried out
structure, a high-speed civil transport (HSCT) wing,next. A perfect isotropic rectangular flat plate of
and a much larger HSCT model. thicknesst and sides andb may buckle under biaxial
loading if the maximum value of

andf® is the force equivalent to the adjoint load. For

Formulation of Buckling Sensitivity
The discretized equations of equilibrium may be written 1 1 S\l Emﬁ D"DZ O]
in terms of the stiffness matrik, the force vectof, A A xq 0 NyEbD )
and the displacement vectoas

Ku=f 1)

exceeds unity, where an applied stress resultans

. . . . ) _ positive when tensile, and
Differentiation of this equation with respect to a design

variablep gives

2 el
H

A=1TtPHES +— (5)
Ku,=f"=-K,u ) B
with
where subscripp denotes derivative with respect to the 5
H=E/12(1-v?) (6)

design variable, and’ is called the pseudo load. The
direct method solves for the displacement derivative

from Eq. (2) and, if necessary, computes streséAn isotropic infinite strip of widttb having two simply
constraints from the displacement and its derivative. fsupported sides, on the other hand, may buckle under

the number of design variablesrisand the number of pure in-plane shear if
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A 52.7t°H
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@) G, :%J‘[g,p +gy N, +N'£$p)] dA (13)

) ] ~where a dot indicates inner product, a subscript
excgeds unity (Whitney, 1987, p. 1.21)' When Eq. (7) I%ollowing a comma shows a partial derivative, and a
applied to a rectangqlar flat plate.is tf';\ken to b.e the subscript without a comma denotes a total derivative.
shorte.r edge. B“°""”9 under. combme?d loading may¢ p is the property of another structural member, the
occur if the value of the interaction equation first two terms inside the square brackets in Eq. (13) are
zero. Taking=t,
_1.1 © ®

A

2
S

>
8
2
s

>

N, =De ; N, =tD. (14)

reaches unity (Lekhnitskii, 1968). A buckling In this formulation, it can be shown (Haftka and

constraint for an isotropic plate under combined loading_ .
. Gurdal, 1992, pp. 312-316) that the adjoint lodd
may be therefore written as

needed to compute sensitivities is obtained from an
initial strain given byg,/A, regardless of whai is, so
that the loading depends on the buckling equation but
not on the details of the finite element. The initial strain
for the buckling constraint is thus given by (assuming

g(N,t) = g,(N,t) +g,(N,t) -1<0 )

whereN is the vector of stress resultants and

1 1 A, >0)
gl(N’t) EA_ ’ gz(Nyt) E/\_Z (10)
’ i 10 n? n? 2N b* O
EI-II—1=_D_ 2 v T 12 ’ Xy26|:| (15)
If A, is negativeg, is taken to be zero. Apg ahA b°A (52.7H)"t O

The sensitivity of a buckling constraint is derived moreThis loading can be easily applied, then, in any program
conveniently if the constraint is expressed as that has initial strain loading capabilities. Under the
application of the adjoint load, the resulting
displacement field is called the adjoint displacemént

If we assume thajis constant oveA it can be shown
that

G= %Ig(N,t)dA (12)

whereA is the plate surface area. ThatGs,is the value
of the buckling constraint averaged over an akea G =g =9, +g, N, +fP @@ (16)
The constitutive equation for the plate is ’ ' '

wheref " is the pseudo load which is also used in the
direct method (Eq. 2).

(12)  To simplify Eq. (16), a property of homogeneous
B\LWE H/WE functions is introduced next with a brief digressiorh If
is a homogeneous function of degrem the arguments

. - . - N andt, that is, if
whereD is the constitutive matrix. The sensitivity Gf

to the design variablp, wherep may, for example, be
the plate's own thickness or the property of another
structural element, is obtained by differentiating Eq.
(11) with respect t to yield

h(cN,ct) = c"h(N,t) 17)

and since
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1
—=N, (18) G(g(N,t)) = I —erNOgA (23)
t ' A
it can be shown that Here the integral is taken over all the plate elements
being lumped together, adis the surface area of the
n . . . .
h,t +th [N,t =K (19) corresponding plate. In the implementation for this

study the integrand in Eq. (23) is constant within each
plate. The derivative of the KS function is given as
(Akgln et al., 1998). In the present case, the constraint

g in Eq. (9) is not homogeneous as a whole but its KS, =G, /G (24)
components are. Fag, n=-2 and forg, n=-4.
Equation (16) hence becomes Steps similar to those leading to Egs. (16) and (20)

from Eq. (10) yield

__PT
G, = __zepg (29, +4gi2)6t,p +f* @*
The homogeneity property (Eq. 19) hence does away = (25)

with the need to implement and compute partial

derivatives of the buckling constraint, and allows us towherem is the number of buckling constraints lumped

use. instead the .constralnt value, which is alread¥ogether antft.p is a Kronecker deItaBt_p is unity if
available. Whem is a property of a structural element I I

plate. The adjoint displacemeant is now due to an

Gp =g, =P [ (21) initial strain state, imposed simultaneously in each of
the plate elements being lumped. The strain state to be

i d in theth plate is gi b
It should be noted that the homogeneity is not limited t0|mpose n theth plate Is given by

the constraints for isotropic plates; it is valid for
. . T _ . In
composite laminates as well. & = pepg T (26)

G=g-= —:t—L(Zg1 +4g,) +f° ©* (20)

where g/A is given by the right hand side of Eq. (15),

Constraint Lumping hich is th ) . qi inale el .
The adjoint method requires computation of the adjoian ich Is the strain state imposed in a single element in

displacements for every potentially active constraint.the absence of lumping
Reducing the number of constraints by lumping them
into groups can increase the savings brought about by/nen multiple load cases are present, one may want to
the method. The continuum version of the KS (Akgiinlump all constraints for the group of members under
et al., 1998) function is used here to lump a set ofll the load cases together into the same KS function.
buckling constraints for a number of flat plates into alhis is the approach we used with the direct method in
single constraint and is defined here as the comparison studies described below. For such an
approach, however, we could not find an initial strain
1 state for sensitivity calculation with the adjoint method.
KS(g(N’t)) :ElnG(g(N’t)) (22) Instead of lumping, approach adopted here for the
adjoint method is to select the most critical load case
for buckling and von Mises constraints separately for
each group of elements and to lump each type of

with p being a positive parameter and where

4
American Institute of Aeronautics and Astronautics



constraints under the respective load case together. THenction whereas the strategy with the direct method
constraints under the other load cases are ignored. Theas to lump each type of constraints under all the load
initial strain state given by Eq. (26) is then computed atases into a single KS function. The two lumping
the most critical load case. strategies were thus different even though the resulting
optima were very close. No constraint deletion strategy
was used with either method with or without lumping.
Applications
Three examples of varying complexity are used toExample 1: 108-bar truss
compare the efficiency of the adjoint and directA 45-node, 108-bar, 80-dof plane truss, shown in Fig.
methods. The three examples are a 108-bar truss, Ja was divided into 32 design regions, with bars in each
simple HSCT wing model, and a large HSCT model.region having a common cross-section, thus giving 32
Sensitivity derivatives are obtained using both methodslesign variables. Optimization runs were made with
and then used in optimization. The 108-bar trusseven load cases using the direct and the adjoint
example is used to compare the effect of lumping ommethods, with and without lumping. When lumping
the two methods. The efficiency of both methods iswas used, bar stress constraints in each region were
compared by varying the number of load cases for thtumped into a continuum KS function. Hence there
two HSCT examples. were 32 KS functions in either method. When no
lumping was used, there were 756 constraints. The
Both the adjoint and direct methods are implemented imlirect method with and without lumping required the
a commercial finite element program, EAL solution of Eqg. (2) 224 times, with the stiffness matrix
(Engineering Analysis Language, EISI-EAL, 1983), for already factored, whereas the adjoint method required
plane-stress elements with von Mises stress constraintee solution of Eq. (3), of the same size, 108 and 32
and buckling constraints and for truss elements. Thémes without and with lumping, respectively. The
optimization code MINOS (Murtagh and Saunder,reason for 108 solutions instead of 756 is that the
1993) has been incorporated into EAL. The linearadjoint load vectof® for a given bar for different load
programming option of MINOS (based on the simpleXcases differs only by a scalar factor.
method) is used in a sequential linear programming
(SLP) optimization approach for this study. The optimum weight and the CPU time using the
adjoint method and the direct method are given in Table
Examples 1 and 2 were run on a Pentium 166 MHz PG, The CPU times are for the entire optimization run
with a single processor with a Windows NT operating(i.e., 8 SLP cycles). The optimum weights in the table
system at the University of Florida. Example 3 was rurgre the weights at the end of eight optimization cycles
on a dual processor Pentium 400 MHz PC with aepresenting convergence to 10 significant digits.
Windows NT operating system at the NASA Langley
Research Center. For all three examples, a finitds can be seen from Table 1, the final weights show
difference approach was used to compute the derivativome dependence on lumping and the choice of
of the stiffness matrix, design variables weremethod. This is attributed to optimization history and to
constrained by move limits which were initially 50 the effect of the KS function, which applies a slightly
percent of the starting design variable values, and whefore conservative constraint. It can also be seen that
lumping was used the value of the KS functionthe lumping was more beneficial to the direct method
parametep was 50. than the adjoint method, even though one would expect
the opposite. The reason for this anomaly is that the
The lumping strategy used with the adjoint method wasavings associated with the adjoint method is in the
to lump each type of constraints (i.e., von Mises andsolution of the equations of equilibrium with fewer
buckling types where applicable) in a design regiorright hand sides. This solution increases superlinearly
under the most critical load case into a single KSwith problem size, and is very small for small
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problems. The additional cost due to implementatiorwhich were due to pull-up maneuvers, climb, cruise and
discussed earlier, is proportional to the number otaxiing. Additional fifteen load cases were derived as a
elements in the problem, and is therefore moreombination of the basic five cases. Stress constraints
significant than the solution time for small problems.  were based on von Mises equivalent stresses in the
membrane elements and axial stresses in the bars.

Table 1. Optimum weights of the 108-bar truss and The implementation of the adjoint method for the
total (8 cycles) CPU times with the direct and sensitivity of lumped buckling constraints was first
adjoint methods with and without KS lumping  verified. The model was then optimized under one, five

under seven load cases. and twenty load cases in different runs subject to
buckling and von Mises stress constraints for
Weight, Ib membrane elements and yield limits for bar elements.
(Time, sec) There were 66 KS functions with both methods
No 36.523367 regardless of the number of load cases. Equation (2)
Lump (312) had to be solved 40times with the direct method
Direct wheren, is the number of load cases and Eq. (3) 66
Lump 37.359306 times with the adjoint method regardless of the number
(169) of load cases. The optimum weights and the CPU times
No 37.022500 are given in Table 2. The CPU times are for the entire
Lump (292) optimization run (i.e., 8 SLP cycles). The optimum
Adjoint weights in the table are the weights at the end of eight
Lump 37.353403 optimization cycles representing convergence to 13
(256) significant digits.
Example 2: Simple HSCT wing Table 2. Optimum weights of the simple HSCT

A simple high-speed civil transport (HSCT) wing model and total (8 cycles) CPU times with the two
model developed by Balabanov et al. (1996), whosénethods using KS lumping.
planform view is shown in Fig. 2, is investigated here.

The 3-D model has 193 nodes, 449 2-node baf No of Direct Adjoint
elements, 383 triangular isotropic membrane elements Load W, Ib W, Ib

and 129 isotropic shear panel elements with a total of Cases (t, sec) (t, sec)

533 degrees of freedom. Figure 2 shows the design 1 119746.87495532 119746.87495534
regions selected on the top skin of the HSCT model, the (750) (1410)
bottom skin being the mirror image of those. Skin 5 149327.13548552 149327.13548557
regions 1, 2, 10, 11, 12, and 13, which cover the trailing (1410) (1560)

edge and strake of the wing, are governed by the 20 149327.13548552 149327.13548557
minimum gauge-thickness constraint set at 0.0035 fi. (2962) (1627)

Skin thickness within each design region is uniform.

The minimum gauge area used for the bar elements is

0.0040 ff. Not all of the finite elements are designed.As can be seen from Table 2, the final weights agree to

There are 40 design variables consisting of 2613 digits accuracy. Also, for this larger problem, the

membrane thicknesses and 14 bar cross-sectional areasmproved efficiency with number of load cases of this
implementation of the adjoint method compared to the

A series of optimization runs with different numbers of direct method is apparent. For five load cases the two

load cases was made. There were five basic load cases
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methods are comparable, and for 20 load cases tlthe number of load cases increases is greater, and the

adjoint method is about 45% cheaper. break-even point now appears to be around three or
four load cases. For 21 load cases, the problem
Example 3: Large HSCT solution with the adjoint method requires only about

The third example is a half-symmetric model of anone-third of the time required by the direct method.
entire high-speed transport airctashown in Fig. 3.
This model was originally presented by Scotti (1995).In addition, the optimization was run to convergence
Results were performed at NASA Langley Researclusing both methods with one load case and seven load
Center. The present EAL adjoint runstreams cannatases. Figure 5 shows the convergence history for the
handle four-noded membrane elements and, thereforaprmalized objective function. It is seen that the direct
each four-noded element in the original model's desigrand adjoint methods converge to comparable weights.
regions was replaced with two three-noded elementslhe values of the design variables were also similar.
which increased the total number of elements in the
model to 16434. In addition, all composite honeycomb
plate sections were replaced with isotropic membrane Discussion and Conclusions
sections, which reduced the number of design variableSensitivity of normal and shear buckling constraints in
in the model to 61. Both stress and buckling constraintsnembranes has been formulated and implemented
are computed for the triangular elements in the designsing the adjoint method. Sensitivity of lumped
regions. constraints has also been implemented. The present
formulation utilizes a characteristic of homogenous
There are seven basic load cases, six arising frorfunctions to avoid calculation of partial derivatives of
supersonic maneuvers at +2.5g and -1.0g and ththe constraints and the shear resultants. Test cases
seventh represents a taxi condition. Additional fourteenincluding a 108-bar truss and two high speed civil
load cases were generated from various combinationsansport (HSCT) models of different complexities
of the basic six maneuver load cases. For timingvere used to compare the direct and the adjoint
purposes, the model was run for four optimizationmethods of sensitivity computation. The two methods
cycles using both the adjoint and direct method. Fohave been compared in terms of efficiency for various
each method, analyses were performed with one, sevenumbers of load cases in optimization runs performed
14, and 21 load cases. The CPU time required taith the EAL finite element software.
complete an optimization cycle is plotted against the
number of load cases in Fig. 4. The lines shown in th@he direct method was found to be more efficient for a
figure are best-fit through the average of the run timesmall number of load cases. The adjoint method
for the four cycles. The actual run times for individual outperforms the direct method in runs with a large
cycles are also indicated on the figure. number of load cases. The advantage of the adjoint
method results from requiring static solutions equal in
For a single load case, the direct method is twice as fasumber to the number of active constraints, while the
as the adjoint method. However, as the number of loadirect method requires a number equal to the number of
cases increases, the adjoint method becomes modesign variables times the number of load cases. The
efficient. Because this example is larger than the prioadvantage of the adjoint method increases with problem
two examples, the efficiency of the adjoint method assize because the solution cost per load case increases
superlinearly with problem size. It must be noted,
however, that the implement EAL (Engineering
* The structural model for this example has been Analysis Language) optimization code was originally
supplied by the Boeing Company and the results are  developed for the direct method and the adjoint method
presented without absolute scales in this paper under has been recently added to the code; there is room for
the conditions of a NASA Langley Property Loan
Agreement, Loan Control Number 1922931.
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improving the efficiency of the adjoint method as 39th AIAA/ASME/ASCE/AHS/ASC Structures,
currently implemented. Structural Dynamics and Materials Conference, Long
Beach, CA, April 20-23, 1998, Proc. pp. 441-448.
The implementation of the direct method in EAL has
been aided with specialized processors developeBalabanov, V. O., Kaufman, M., Giunta, A. A., Haftka,
especially for this method. The implementation of theR. T., Grossman, B., Mason, W. H., and Watson, L. T.,
adjoint method used standard EAL runstream‘Developing Customized Wing Weight Function by
commands, which may accrue higher overhead durintructural Optimization on Parallel Computers,” AIAA
execution. Thus, for a single load case the adjoinPaper 96-1336, Proceedings of the 37th
method required substantially more time than the direcAIAA/ASME/ASCE/AHS/ASC Structures, Structural
method. Dynamics and Materials Conference, Salt Lake City,
UT, April 15-17, 1996, Part 1, pp. 113-125.
No constraint deletion strategy was used with either the
direct or the adjoint method. It may be worthwhile to EISI-EAL Engineering Analysis Language Reference
investigate the effect of constraint deletion in Manual 1983.
conjunction with lumping or without lumping.
Haftka, R. T. and Gurdal, ZElements of Structural
Optimization Kluwer Academic Publishers/®3dition,
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Figure 1. 108-bar truss.
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Figure 2. Simple HSCT wing model and the design regions on the top skin.
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Figure 3. Half-symmetric finite-element model of the large high-speed civil transport.
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Figure 4. CPU timing as a function of load cases for the large high-speed civil transport.
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Figure 5. Optimization history for the large high-speed civil transport.
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